В Томском политехе проходит испытания алмаз для детектора Большого адронного коллайдера

14.11.2017
Напомним, научная группа ТПУ участвует в апгрейде БАК. Политехники задействованы в проекте Beam Radiation Instrumentation and Luminosity (BRIL, коллаборация CMS) по измерению характеристик пучка элементарных частиц. Молодой ученый ТПУ Виталий Охотников, инженер научно-производственной лаборатории «Импульсно-пучковых, электроразрядных и плазменных технологий», курирует в этом проекте работу по повышению надежности системы алмазных детекторов BCML (Beam Condition Monitor Leakage), предназначенной для того, чтобы в случае возникновения неисправностей автоматически отключить ускорители коллайдера. Например, если будет превышен уровень светимости и радиации. Такие неисправности фиксируют алмазные детекторы. В связи с этим крайне важно, чтобы они работали исправно.
Однако ученые отмечают, что детекторы, которые установлены на БАК сейчас, часто ведут себя непредсказуемо, не всегда удается понять причину различия в их рабочих характеристиках.
Почему, например, из двух детекторов, созданных в одних условиях и со схожими начальными характеристиками, один быстро выходит из строя, а другой продолжает работать в тех же самых условиях много месяцев. Задача ученых ТПУ — выяснить, какие изменения происходят внутри таких детекторов во время работы коллайдера, чтобы затем сделать их устойчивее и предсказуемее в условиях высоких энергий усиленного пучка БАК. Отметим, как сообщалось ранее, к 2020 году ЦЕРН планирует увеличить мощность протонного пучка коллайдера в десять раз.
С этой целью один из алмазных образцов, которые входят в состав детекторов БАК, был недавно доставлен в Томский политех для испытаний.

«У нашего коллектива под руководством профессора кафедры экспериментальной физики Геннадия Ремнева есть большой опыт в области изучения, выращивания алмазов, анализа и оценки их внутренних изменений, — рассказывает Виталий Охотников. — Чтобы такой анализ провести, нам необходим эталон. Образец, который мы получили, как раз им и является. С его помощью мы постараемся понять, что происходит внутри таких кристаллов и как их можно усовершенствовать».
Сейчас ученые ТПУ исследуют свойства полученного алмаза, отрабатывают на нем различные физические процессы.
Первые наблюдения уже показали, что, возможно, алмазные детекторы в ЦЕРНе ведут себя различно в одинаковых условиях из-за металлизации (когда на алмаз наносится тонкий слой металла).
«Детекторы BCML находятся максимально близко к пучку БАК, чтобы вовремя суметь зафиксировать какие-либо отклонения в его работе. В связи с этим они получают достаточно большую дозу радиации, возникающей при столкновении заряженных частиц. Не каждый материал такую нагрузку выдержит, поэтому в таких детекторах и используют алмаз — один из самых радиационно-прочных материалов в мире. Он устойчиво и долго работает в условиях радиационного облучения, а также не требует охлаждения. Для сбора же заряда, образованного в теле детектора при облучении, по обе стороны от алмаза наносят проводящие обкладки, с которых и снимается сигнал, — объясняет Виталий Охотников. — Создание проводящих обкладок для детектора — это достаточно большая проблема, так как они должны сочетать высокую проводимость и хорошую адгезию (ред. — сцепление) с материалом детектора — это довольно-таки трудно из-за специфики алмаза. На металлизированных детекторах со временем покрытие отслаивается, между ним и алмазом образуются пустоты, это ведет к неравномерности поведения всего тела детектора, что может крайне негативно влиять на его характеристики. Мы считаем, это один из важных факторов, влияющих на возникающие различия в поведении алмазных детекторов с течением работы».
Для решения этой проблемы ученые ТПУ предложили синтезировать на непроводящем теле детектора алмазные слои, но уже с легированным (ред. — внедренным) в них бором.
«По сути, мы выращиваем на алмазе другой алмаз с примесью бора.
Алмазные покрытия друг с другом хорошо крепятся, сцепление их поверхностей близко к идеальному. Это устраняет риск появления дефектов между ними, повышается вероятность, что во время своей работы детектор будет вести себя более предсказуемо, — заключает Виталий Охотников. — После детального обследования присланного нам образца мы нанесем на него такое алмазное покрытие и в январе 2018 года установим детектор на основе этого алмаза на коллайдере в специальной исследовательской зоне. Там он будет работать в течение года. В январе 2019-го мы извлечем его и изучим изменения, произошедшие в нем и в детекторах с обычной металлизацией. Если результаты эксперимента окажутся положительными, это позволит нам в будущем модернизировать и другие алмазные детекторы ЦЕРНа».

Добавим, еще одна задача политехников — создать у себя научную и техническую базу, чтобы уже самим выращивать усовершенствованные алмазные детекторы, более устойчивые к повышенным мощностям, на которые планирует перейти ЦЕРН в ближайшем будущем.


Источник: Служба новостей ТПУ

© 2016 Ассоциация некоммерческих организаций «Томский консорциум научно-образовательных и научных организаций» . Все права защищены.

Разработка: Mars Digital

Яндекс.Метрика